Zooming in on Human Growth

Annotated Analyses in Matlab

In this chapter, we did two things. First, we used a monotone smoothing method to estimate
growth curves and their derivatives. Then we considered the registration problem, and there
again we used a nonparametric monotonic function estimation method to estimating the warping
functions h(t) that aligned salient curve features. What is common to both problems, then, isthe
use of monotone function estimation. Before we get down to the data analysis, it might be worth
thinking about the monotone smoothing process a hit.

Some tips on monotone smoothing

It is worth reviewing here how a monotone function is contructed using the functional data
analysis software that we will use. Unlike other smoothing problems considered in the FDA
book, in this case the functional data object does not approximate the data directly, but rather
after passing through two transformations. The processis captured in this equation

h(t)= B+ IBJeW(U)du )

where W(u) is afunctional data object with the usual basis expansion. The transformations are,
first, exponentiation, which makes the function positive, and second, integration up to t, which
then makes the function strictly increasing or monotonic. Function h(t) can be viewed as a
monotone functional data (MDF) object. The two regression coefficients, 5, and £, give h(t) the
origin and range required to fit the data.

The fact that W(t) does not fit the data directly makes the computation more complex. The
coefficientsin its basis function expansion must now be estimated iteratively. That is, we have to
supply a set of initial values for them, and we usually use 0's, which define a straight line. Then
these initial values are updated at each iteration, each time improving the fitting criterion, until
the algorithm decides that no further improvement is needed. This, naturally, takes time.

The algorithm itself is fairly complex, and like any complex algorithm, there will surely be

situations where it will fail. The fact that it has worked successfully on any number of data sets is
no guarantee that it will work on the next. Naturally the developer of the algorithm instinctively

or by trial and error avoids applying it to data where failure happens, but once it gets in the hands
of someone unaware of its structure, the chances that the data are inappropriate, or something else
unforeseen by the developer happens, are greatly increased.

Here are some suggestions:

1. Start small. Use a small number of basis functions for W(u) at first, meaning a small
number of knots for a B-spline expansion in most instances. For example, when | start
out, | often use one interior knot. If | use order 6 B-spline basis functions, this translates
into 7 basis functions. Eventually, | may use even more basis functions than there are
data points, but | don’t start out that way!

2. Position knots carefully. Make sure that there is at least one data value between each
successive pair of knots, and if the data are noisy, aim for three to five. One more or less



fail-safe rule isto position knots at every k™ ordered data value, that is, at the quantiles of
the data. When | start out, | often use one interior knot, positioned at the median. If that
works, | move to three interior knots, and so on.

3. Uselots of roughness penalty. For monotone smoothing, | like to use a penalty on the
third derivative of W(u), since this ensures that the second derivative of h(t) is smooth.

And | start off with large penalty parameter values A, like 100. The worst thing that can
happen isthat the result will look like astraight line. But it is safer to decrease a
smoothing parameter to an acceptable value than to start off too low, and especially at 0,
and increaseit. Roughness penalty values that are too small arelikely to lead to local
minima for least squaresfitting, as well as large numbers of iterations.

4. Consider calibrating your smooth on simulated data where you know what the right
answer is, and can actually calculate the roughness penalty that gives the best estimate. |
calibrated the smoothing of growth data on a highly regarded parametric growth model,
that of Jolicoeur (1977?), and | added errors to that model’s values that imitated in size and
variation over t what | saw in the actual data.

5. When you've settled on the right number of knots, the right roughness penalty, and are
ready to go into production, you might still consider fitting each set of data with a
decreasing set of roughness penalties, usually equally spaced on the log scale, perhaps
also with convergence criterion values that also decrease, with the final step using the
roughness penalty and convergence criterion that you want. Of course, after the first in
the sequence, in subsequent set of iterations will be started off with the final solution in
the previous sequence, so this does not cost a great deal in terms of total number of
iterations, but does ensure some extra stability, and tends to avoid local minima.

Smoothing the Berkeley growth data

Your first task in an analysis is usually to inform Matlab about the location of any files that you
will use. These include M-files with than extension that contain the Matlab fucntions and

code that you will use, and the data files.On my system, these two commands are required, the
first giving the location of the FDA functions, and second the data files.

addpath (' c:\MATLABRL1\fdaM dir’)
addpat h ('’ c:\ MATLABR11\ f daM di r\ exanpl es\ growt h’)

Now we can load the data. Since the data are not arranged in the usual observation by replication
matrix that we need, we can't use the load command. These commands input the data and
reshape them into the desired format.

%rrale dat a

fid fopen(' hgtmdat’, rt’);

hgtrrrrat = reshape(fscanf(fld "% ), [31,39]);
% fermal e data

fid = fopen(' hgtf.dat’, rt’);

hgtf mat = reshape(fscanf(fid, % '),[31,54]);

The 31 age valudgat which the observations were taken are the same for every child, and are set
up by these commands, which also set up the number of cases for each gender.

age
nage

[ 1:0.25:2, 3:8, 8.5:0.5:18 ]’
| engt h(age);



ncasem
ncasef

= si ze(hgt nmat, 2);

= size(hgtfmat, 2);

Now we’re ready to set up the basis object that we will use for the expansion of fikigijon

We'll use B-splines of order 6, since we will be using a roughness penalty on the third derivative.
We'll position a knot at every data point. This disregards the advice given above, but a lot of
experimentation with smaller numbers of knots went on before | was able to work happily with

this choice, which gives our monotone smoothing functions maximal flexibility. The number of
basis functions that this knot choice implies is 31 + 6 — 2 = 35, a value that exceeds the number of
data points, but the roughness penalty that we will use will enforce a reasonable amount of
smoothness.

norder = 6;
nbasi s = nage + norder - 2;
wbasis = create bspline_basis([1,18], nbasis, norder, age’);

Now we set up the initial estimate ¥f(u) by specifying a coefficient vector containing all
zero’s, corresponding ta(t) being a straight line. This is a good general choice, and the
algorithm will usually produce a much better fit to the data after a single iteration.

cvecO
W do

= zeros(nbasis, 1); % initial coefficient estimtes

= fd(cvecO, woasis); % initial functional data object

We also need two vectors containing one’s. Vertmt is effectively a design matrix that

could potentially permit the coefficiein (1) to vary over sampling points as a function of

some covariates, but we don't need this flexibility here. Vemior could allow us to weight
observations variably. This is actually a good idea for these data, since height measurements in
early childhood are, understandably, more noisy than in later years. However, to keep this
exposition simple, we also will just use ones as weights.

zmat
wgt

= ones(nage, 1); % design matrix for beta O

= zmat; % weights for observations

Now wet set up the roughness penalty and the penalty parameter. In this case we are penalizing
the size of the third derivative #(u). The penalty parametdambda was found to give best

results in calibration trials on a parametric model.

Lfd
| anbda

3; % penalize curvature of acceleration
10.7(-1.5); % snoothing paraneter

The monotone smoothing function can only smooth one set of data at a time, unlike directing
smoothing functions likedat a2f d orsnoot h_basi s. Therefore we will have to loop
through the children, and store the essential results in the arrays set up in the following
commands. Matrix cvecstore will store the coefficients defikifig), matrix betastore will store
the two regression coefficients in (1) per case, and vVBMBESt or e will store the estimated
standard errors of residuals computed for each case. The set up is for the 39 males.

cvecstore = zeros(nbasis, ncasen;
betastore = zeros(2, ncasen;
RVBEst ore = zeros(1, ncasem;

Now we're ready to do the actual analyses. Inside the loop in the following code, the height
observations are put in array hgt, the monotone smoothing fursstioot h_nonot one is
called, the standard error is estimated, the results stored in the appropriate arrays, and some



results are displayed for the case. These analysestook about ten minutes on my 750 mherz
notebook computer.

for icase=1:ncasem
hgt = hgtnmat (:, i case);
[Wd, beta, Fstr, iternum iterhist] = ...
snoot h_nonot one(age, hgt, wgt, WdO, zmat, Lfd, |anbda);
hgt hat = beta(l1l) + beta(2).*nonfn(age, Wd);
RVMSGE = sqrt(nmean((hgt - hgthat).”2.*wgt)/ mean(wgt));
cvecstore(l: nbasis,icase) get coef (W d);
bet astore(1l: nbeta, icase) bet a;
RMSEst or e(i case) = RMSE;
fprintf('%.f 9%.f %2.5f %0.4f\n", [icase, iternum Fstr.f,
RVBE] )
end

When you run this code, you will also see results for each iteration, corresponding to the default
for output during iterations. This output can either be eliminated or extended by supplying the
appropriate argument to the function. 'Y ou might want to review the options availablein
smooth_monotone in the codeitself, or in the guide to the FDA functions.

Plotting the results

A special purpose menu-based function, menusetup, has been set up for displaying the results
of amonotone smoothing of growth data.  This functions allows you to choose the case to be
plotted and four plots:
» the height observations al ong with the smoothing curve
» the velocity curve with the ages of observation indicated by +'s
» the acceleration curve with the ages of observation indicated by +'s
» the residuals, along with horizontal lines indicating plus and minus two standard errors.

To set up this program, we must first create struct objects for each set of data, as follows:

mal estr. ncase = ncasem

mal estr. age = age*ones(1, ncasen;
mal estr. hgt = hgt mmat ;

mal estr. knots = age*ones(1, ncasen;
mal estr.cvec = cvecm

mal estr. beta = betam

mal estr. RMVBE = RMSEmM

mal estr.nord = norder;

femal estr. ncase = ncasef;

femal estr. age = age*ones(1, ncasef);
femal estr. hgt = hgtfmat;

femal estr. knots = age*ones(1, ncasef);
femal estr.cvec = cvecf;

femal estr. beta = betaf;

femal estr. RVBE = RVBEf ;

femal estr.nord = norder;

Note that these struct objects allow ages of observation to vary, as well as knot placement, two
features that we haven't used.



Now we can invoke the plotting function.

=1, % load initial case to be displayed

2, Ho_OK, ...

Hc Next, Hc Last, Hc _This, Hc_Enter, Hc Quit,
Hc Height, Hc_Velocity, Hc Accel, Hc_Residual,
Hc_Mal e, Hc Femal e, Hc CaseNo] ...

= menuset up(i case, malestr, feralestr);

close(H f1); <close(Hf2); % close the figures

Y ou will now see two windows, one for the plots on the left, and a smaller menu window on the
right. You may have to adjust their size and location to match your screen size. Y ou can control
which plot you will see by clicking on the radio buttons in the menu, and when you have set up
the plot that you want, click on the “OK” button.

It is essential to have all those handles returned by the function, incidentally, since Matlab must
know them to change the state of the menu.

Note in the velocity and acceleration plots that there is strong evidence of a smaller growth spurt,
called the mid-spurt by auxologists, before the main pubertal growth spurt for most cases.

Have a look at the residuals. Does it look like we might have over-smoothed the data for ages
beyond 4 years or so? Should we consider a weighted smooth, changing thegiedtothe

call tononot one to something that varies over ages. How would we do this? How might this
change what we see in the mid-spurt?

Registration of the Berkeley Data

The next step to consider is the register the growth curves for the Berkeley data. With these data,
as with many others, the selection of what to register is an important decision. Curves to be
registered should have oscillations, preferably about zero, and at the same time be fairly smooth.
The acceleration curves oscillate about zero for the growth data, but tend to behave wildly for
ages below 5 years. The velocity curves are better behaved, and do show at least one peak at the
pubertal growth spurt (PGS). In these notes, we opt for registering the velocity curves.

Even the velocity curves are data to register for a number of reasons. First, the amount of phase
variation is much larger than the other data sets that we consider; the timing of the PGS for girls
can vary from 8 to 17 years. This means that a PGS event centered at 10 years is long over when
an event centered at 15 begins, and the two therefore do not overlap. The whole-curve algorithm
in functionr egi st er f d is going to have a tough time aligning events that far apart. A second
problem is that the behavior of the curves before the PGS varies great in amplitude as well as
phase, in the sense that a few curves show no midspurt peak, more show one, and some show two
or more. Strictly speaking, we should not even be trying to register curves with varying numbers

of peaks.

For these reasons, we counsel registering in two steps. First, use landmark registration to register
the PGS because it is easily identifiable in all velocity curves. Then follow this up with the more
sophisticated and automatic procedureégi st er f d to fine-tune the registration. Thisis a



safer process. Note, though, that afew of the figuresin the chapter were generated by using only
regi st erf d, and that the results that we will obtain in these notes will not be identical to
those. No matter, these are probably better!

Landmark registration of the female velocity curves

First, let's set up a functional data object for the velocity curves. This code sets up an order 4 B-
spline basis with a knot at each age of observation, and then creates the object,

using as data the velocities already stored in aredyf f i t for the finely-spaced ages in vector
agefi ne.

nbasi s = nage + 2;
hgtbasis = create_bspline_basis([1,18], nbasis, 4, age’);
velffd = data2fd(velffit, agefine, hgtbasis);

We now plot each velocity curvein turn. Calling Matlab function ginput  displays cross-hairs
on the plot, and positioning these using the mouse at the top of the PGS peak and clicking stores
the time of the peak in the vector marksf.

marksf = zeros(ncasef,1);
for i = 1:ncasef
plot(velffd(i))
title('Female ',num2str(i)])
[marksf(i), y] = ginput(1);
end

Next we calculate the mean time, and use this as the landmark time for the registered curves.
meanmarksf = mean(marksf);

We need a basis object for the function landmarkreg. We set up a B-spline basis of order 4 with a
singleinterior knot at the mean PGS time.

breaks =[1,meanmarksf,18];
warpbasis = create_bspline_basis([1,18], 5, 4, breaks);

Now we are ready to invoke the landmark registration function, and then set up the functional
data object for the registered curves.

Imrkstr = landmarkreg(velffd, marksf, meanmarksf, warpbasis);
velfregfd = Imrkstr.regfd; % registered curves

We plot the two sets of velocitiesto see how well we have registered them.

subplot(1,2,1)
plot(velffd); title('Unregistered Female Velocities')
subplot(1,2,2)
plot(velfregfd); title('Registered Female Velocities')



Continuous registration of the female velocity curves

Now we can tune the alignment of these curves, which are already well-registered. This second
step will, for example, align the midspurt peaks for curves having only one, or at least only one
large one.

First we set up abasis for the function W(t). This arelatively low-dimensional basis since we
don’t want to give the warping functions too much flexibility due to the complex nature of the
amplitude variation prior to the PGS.

8.

nbasi sw ;
create_bspline_basis([1, 18], nbasisw, 5);

basi sw

Now set up the functional data object for functibt).

coefO
W dO

zer os( nbasi sw, ncasef) ;
fd(coef0, basisw;

To further stabilize the warping functions, we also apply a roughness penalty.
Lfd = 2; |anbda = 2;

Now we carry out the registration. The first argument is the target function, and is the cross-
sectional mean of the landmarg-registered curves. This function has to compute each registration
iteratively, so it will take a while to complete the computation. The function will display results

at each iteration though, so you can track its progress.

When it is through, the result of this registration replaces that of the landmark registration.

regstrf = registerfd(mean(vel fregfd), velfregfd,

W do, Lfd, |anbda);
vel fregfd = regstrf.regfd;

The data from the ten year old boy

Here is the set up for the data for this boy.

fid = fopen(’ onechild.dat’, rt");

tenmp = fscanf(fid,” %’ );
data = reshape(tenp, [n, 2]);
day = data(:,1);

hgt = data(:, 2);

n = length(hgt);

We will set up the analysis with the same smoothing parameters that we used for the Berkeley
growth data, but we don’t need to put at a knot at each of the 83 days. We’'ll use about half that
many knots, putting a knot at every other day. This implies 45 basis functions.

knots = day(1l:2:n)’;
nknots = | ength(knots);
norder = 5;



nbasi s = nknots + norder - 2;

basis = create_bspline_basis([day(1l), day(n)], nbasis, norder,
knots) ;

cvecO = zeros(nbasis,1);

W do = fd(cvecO, basis);

wgt = ones(n, 1);

zmat = wgt ;

Lfd = 3;

| anbda = 107(-.5);

Now we carry out the analysis.

[Wd, beta, Fstr, iternum iterhist] = ...

nonot one(day, hgt, wgt, WdO, zmat, Lfd, |anbda);
beta(1l) + beta(2).*nonfngrad(day, Wd);
sgrt (nean((hgt - yhat).”2));

yhat
RVBE

Then we plot the observations and the smoothing function.

dayfi ne i nspace(day(1), day(n), 151)";

yhat fi ne beta(1) + beta(2).*nonfn(dayfine, Wd);
pl ot (day, hgt, 'o', dayfine, yhatfine, '-")

x|l abel ("\fontsize{16} Day’)

yl abel ("\fontsize{16} Centineters’)
title(['\fontsize{16} RMSE = ,num2str(RMSE)])

And also we plot the velocity function, which shows striking evidence of a series of mini growth
spurts. Because of the gap in recording time during the Easter holidays, we can't be too sure
about the velocity peak at 200 days, but at least it seems that there is a spurt every 100 days or so.

Dhgt = beta(2).*eval non(dayfine, Wd, 1);
pl ot (dayfi ne, Dhgt)

x|l abel ("\fontsize{12} Days’)
yl abel ("\fontsize{12} Centineters/day’)

Principal components analysis of the Berkeley female data

Here is how to compute the principal components analysis results given in the chapter.

PCA of amplitude variation of acceleration.

Here we do a PCA of the registered acceleration curves. Because the acceleration curves vary a
great deal more at ages less than four years, and since we are primarily interested in the
components of variation above four, we first set up a functional data object for the acceleration
from ages 4 to 18.

accfregfd = deriv(velfregffd,1);



ageshort i nspace(4, 18, 101) " ;

accf mat eval (accfregfd, ageshort);

kntshrt = age(find(age >= 4 & age <= 18))’;

nbasisshrt = length(kntshrt) + 2;

shrtbasis = create_bspline_basis([4,18], ...
nbasisshrt, 4, kntshrt);

accfregfd = data2fd(accfmat, ageshort, shrtbasis);

Now we carry out the PCA, keeping three harmonics and using Varimax rotation.

nharm = 3;
pcastr = pca(accfregfd, nharm);
pcastr = varmx_pca(pcastr);

Y ou can now plot the harmonics using

plot_pca(pcastr);

PCA of phase variation of acceleration.

L et us assume here that we have used only the continuous registration function registerfd, and
that we have stored the functions W(t) as the functional data object velfWfd . Now setup a
matrix of values of the warping functions.

warpmatf = monfn(agefine, velfwfd);
warpmatf = 1 + 17 *warpmatf./(ones(101,1)*warpmatf(101,:));

With thisin hand, just do aregular principal components analysis of this matrix. This can be
done asfollows.

warpcov = cov(warpmatf');

[eigvec, eigval] = eig(warpcov);

[eigval, eigind] = sort(diag(eigval));

eigvec = eigvec(:,eigind);

% variance accounted for by each component
varval = 100*eigval./sum(eigval);

For plotting purposes we want the mean acceleration curve.
accfshort = eval(accfregmeanfd, ageshort);
The following code produces the last plot in the chapter.

subplot(1,3,1)
plot(ageshort+ 5.*eigvec(:,101), accfshort, 'k-', ...
ageshort, accfshort, 'k--', ...
[4,18], [0,0], 'k:")
axis('square"); axis([4,18,-3,2])
title('Harm. 1 ',num2str(round(varval(101))),'%")
subplot(1,3,2)



pl ot (ageshort+ 5. *ei gvec(:, 100), accfshort, ’'k-’,
ageshort, accfshort, "k--",
[4,18], [0,0], "k:")

axi s(’'square’); axis([4,18,-3,2])

title(["Harm 2 ', nunRstr(round(varval (100))),'%])

subplot(1,3,3)

pl ot (ageshort+ 5. *ei gvec(:, 99), accfshort, 'k-',
ageshort, accfshort, 'k--',
[4,18], [0,0], "k:")

axi s(’square’); axis([4,18,-3,2])

title(["Harm 3 ', nunstr(round(varval (99))), %])



