
The dynamics of handwriting printed characters

Annotated Analyses in Matlab

Before you begin, don’t forget to add the path to the functional data analysis functions.
On my system, this is achieved by the command

addpath('../fdaM')

The Data

The data to be analyzed in these notes are the registered X-, Y-, and Z-coordinates for the
handwriting data described in Chapter 7, and in the notes on their analysis in the Web site
for that chapter.  It is assumed that these analyses have already been completed.  These
analyses leave us with the registered coordinate values at 470 equally-spaced time points
in three-dimensional array uniregpenpos.  The time values themselves are in vector
unitime.  If you have already done these analyses, and saved the results as .mat file
regprint, than you can access these variables by this statement:

load regprint

Removing Linear Trend from the X-Coordinate

We want to develop a second-order linear differential equation for each of the
coordinates.  However, the X-coordinate differs from the other two in having an overall
linear trend, since the hand moves in general from left to right.  We first remove this
trend, storing it away in matrix Xcoef to be re-introduced later after the differential
equation has been estimated.

unipdapenpos = uniregpenpos;
Xcoef = zeros(20,2);
for i = records

X = unipdapenpos(:,i,1);
Xcoef(i,:) = X\[ones(npts,1),unitime];
unipdapenpos(:,i,1) = X - Xcoef(i,1) - Xcoef(i,2)*unitime;

end

Now we make a functional data object out of the de-trended coordinates. We apply a small
amount of additional smoothing as well, since we will need to work with third derivatives, and
the higher the level of derivative needed, the smoother the curves must be.  We penalize the size
of the fifth derivative in order to control the curvature of the third.



penbasis0 = create_bspline_basis([0,max(unitime)], 47, 8);
unipenfd  = data2fd(unipdapenpos, unitime, penbasis0);
unilambda = 1e-14;
Lfd       = 5;
unipenfd  = smooth_fd(unipenfd, unilambda, Lfd);

Finally let’s calculate the third derivative values, and their mean and standard deviation.

D3       = eval_fd(unitime, unipenfd, 3);
D3mean   = zeros(npts,3);
D3stddev = zeros(npts,3);
for j=1:3
    D3mean(:,j)   = mean(squeeze(D3(:,:,j)),2);
    D3stddev(:,j) = sqrt(var(squeeze(D3(:,:,j))'))';
end

The Principal Differential Analysis

Now we are ready to estimate the equation.  First we have to set up the arguments
required by function pdascalar.  This function estimates the forcing function �(t)  and the
weight functions � j(t) in equation (11.3) separately for each coordinate.

The order of the equation pdaorder is three since we want a second order linear
equation in velocity.   That is, technically we are using derivatives of order zero through
three, but we will actually weight the coordinates themselves (derivatives of order zero)
by zero.  That is, � 0(t )= 0, but we need to estimate � 1(t) and � 2(t), and we must do this
for each set of 20 coordinate functions.  Here we set the order of the equation.

pdaorder = 3;

The scalar festimate has a logical value indicating whether we want to estimate the
function function �(t) .   The vector westimate contains logical values indicating which
derivative weight functions  � j(t)  will be estimated and which will be fixed.    Only the
order zero weight function is fixed.

festimate = 1;
westimate = [0; 1; 1];

We also need to specify the amount of smoothing, if any, that will be applied to the
estimates of these function.  In this case we won’t be doing any smoothing.

flambda = 0;
wlambda = zeros(3,1);

The intercept and weight functions require a basis specification since the function will
return functional data objects for them.  Here we use the B-spline basis of order four, and
use 41 basis functions.



fbasis = create_bspline_basis([0,max(unitime)], 41);
wbasis = fbasis;

Finally, in our setting up of the analysis, we need to supply some default values for the
forcing and weight functions.  These values won’t affect the functions being estimated,
but these will supply the zero value for � 0(t ).
ffd0 = fd(zeros(nbasisw,1,3), fbasis);
wfd0 = fd(zeros(nbasisw,4,3), wbasis);

Now we carry out the principal differential analysis.

[ffd, wfd, resfd] = pdascalar(unipenfd, pdaorder, ...
                           fbasis, flambda, ffd0, festimate, ...
                           wbasis, wlambda, wfd0, westimate);

Plotting the Results

Now we want to plot up our estimates, in ffd for the forcing functions and in wfd for the
weight functions.  Recall that there are a set of these for each coordinate direction.  First,
let’s look at the forcing functions.  This code plots these in three vertically arranged
panels.

coordlabel = ['X', 'Y', 'Z']
for j=1:3
    subplot(3,1,j)
    plot(ffd); ylabel('meters'); title(coordlabel(j))
    if j==3, xlabel('seconds'); else xlabel(''); end
end

Now let’s view the weight functions, looking only at those for velocity and acceleration,
of course, since the weight on position is 0.  This code plots these in a 3 by 2 array of
panels.

m = 0;
for j=1:3, for i=2:3
        m = m + 1;
        subplot(3,2,m)
        plot(wfd(i,j))
        if i==2
            axis([0,2.34,-400,1200])
            if j==1, title('Velocity'); end
        end
        if i==3
            axis([0,2.34,-20,20])
            if j==1, title('Acceleration'); end
        end
        if j==3, xlabel('seconds'); else xlabel(''); end
        ylabel([coordlabel(j),' Weight'])



end, end

Finally, we can plot the residual functions, and these are returned in resfd. For
comparison purposes, we will also plot the mean third derivative, which provides a
reference function for how small these residuals are.

for j=1:3
    subplot(3,1,j)
    if j==1
        title('Residual Functions');
    else
        title('');
    end
    hold on
    plot(resfd(:,j))
    plot(unitime, D3mean(:,j), 'g--')
    xlabel(''), ylabel([coordlabel(j),' m/s^3'])
    axis([0,2.34,-150,150])
    hold off
    if j==3, xlabel('seconds');  end
end


