
Functional Models for Reaction Time Distributions: Hyperactive
versus Normal Children

Annotated Analyses in Matlab

1. The data

Our data consist of around 70 reaction times (RT’s) for each child for (i) a sample of 17
children diagnosed as attention-deficit (hyperactive) disorder, or ADHD for short, and (ii)
a sample of 16 normal children who act as controls. The data have already been screened
to eliminate really long reaction times that seem not to reflect the normal reaction
processes, and as a result of this screening, all reaction times are no larger than 3000
milliseconds.

Your first task is to inform Matlab about where the files that you are going to use are
located using the DGGSDWK command. These files are:

• Raw data files to be input
• Functional data analysis functions that you will need to use
• Special m-files containing other information, probably in your working directory.

Here are the commands that are appropriate to my Matlab installation on a personal
computer:

���/RFDWLRQ�RI�WKH�0�ILOHV�IRU�WKH�DQDO\VLV�RI�WKH�GDWD
DGGSDWK�
F�?PDWODE?$'+'
�
���/RFDWLRQ�RI�WKH�UDZ�GDWD�WR�EH�LQSXW
DGGSDWK�
F�?PDWODE?$'+'?GDWD
�
���/RFDWLRQ�RI�WKH�)'$�IXQFWLRQV
DGGSDWK�
F�?PDWODE?IGD0
�

The data are in two files, +GDW�W[W for the hyperactives, and &GDW�W[W for the
controls. In each file, the first column contains the number of the child, and the second a
reaction time. These are loaded into Matlab and some variables set up with these
commands:

ORDG�&GDW�W[W���������&RQWURO�JURXS�GDWD
ORDG�+GDW�W[W���������$'+'����JURXS�GDWD

QILOHV&� �������������1XPEHU�RI�FRQWURO�FDVHV
QILOHV+� �������������1XPEHU�RI�$'+'����FDVHV

57&� �&GDW������������&RQWURO�UHDFWLRQ�WLPHV
57+� �+GDW������������$'+'����UHDFWLRQ�WLPHV

&1� �OHQJWK�57&�������&RQWURO�WRWDO�VDPSOH�VL]H
+1� �OHQJWK�57+�������$'+'����WRWDO�VDPSOH�VL]H

2. Some histograms

The first thing we want to do is to take a peak at how the RT’s are distributed. These
commands set up a two-panel display of histograms for the RT’s for the first subject in
each sample. Note that we use the KLVWF and EDU functions in order to force the width
of the bars to be the same for each plot.

57&�� �&GDW�&GDW����� �����
57+�� �+GDW�+GDW����� �����

HGJHV� ������������

VXESORW�������
QK�� �KLVWF�57+��HGJHV��
EDU�HGJHV��QK���
KLVWF
�
D[LV�>��������������@�
[ODEHO�
?IRQWVL]H^��`�0LOOLVHFRQGV
�
WLWOH�
?IRQWVL]H^��`�)LUVW�$'+'
�
VXESORW�������
QF�� �KLVWF�57&��HGJHV��
EDU�HGJHV��QF���
KLVWF
�
D[LV�>��������������@�
[ODEHO�
?IRQWVL]H^��`�0LOOLVHFRQGV
�
WLWOH�
?IRQWVL]H^��`�)LUVW�&RQWURO
�

As an exercise, you might like to try different numbers of bars, achieved by modifying
the HGJHV variable.

3. Fitting group densities

Now we’d like to estimate the probability density functions for the two groups, ignoring
individual differences. That is, we treat each set of data as being drawn from a
homogeneous sample. This is, of course, not correct, but it will give us a picture of the
gross differences between the two groups that will also be a bit more refined than the
histograms that we did above.

The density function is defined as the normalized exponential of a functional data object.
Consequently, the first task is define the basis for representing the object. The natural
choice in this case would be a B-spline basis. The lower limit of the range is set slightly
below the smallest observed reaction time. These commands specify the number of basis
functions, their order, and the range.

QEDVLV� ���������������XVH����EDVLV�IXQFWLRQV
QRUGHU� ���������������XVH�RUGHU���VSOLQHV
UDQJH[� �>������@������VHW�UDQJH

Now we set up equally spaced knots, except for a knot at 100 msec, which we drop
because there are no observations between 0 and 200 msec.

EUHDNV� �>��������������@�

Now we can create the basis. We also set up an initial coefficient vector containing all,
and then load the coefficient vector and basis into an functional data object, :IG�.

EDVLV� �FUHDWHBEVSOLQHBEDVLV�UDQJH[��QEDVLV��QRUGHU��EUHDNV��
FYHF�� �]HURV�QEDVLV����
:IG��� �IG�FYHF���EDVLV��

We will exercise a light amount of smoothing on the estimated functional data objects by
penalizing their third derivative. Why the third derivative, you ask? Well, the first
derivative tends to be linear for densities resembling the normal distribution in the sense
of having a central single mode. By penalizing the third derivative, therefore, we smooth
the first derivative towards linearity (i. e. no curvature). We chose to make the order of
splines 5 so that the third derivative would itself be reasonably smooth or differentiable.
But the penalty parameter in this case is small, and the result is simply to remove some
minor wiggles but still allow the data to speak for themselves. Here are the set ups for
the linear differential operator /IG and the smoothing parameter:

/IG���� ���
ODPEGD� ��H���

Now we’re ready to estimate the densities. This is achieved by the GHQVLW\IG
function. These calls use several default argument values. The complete listing of the
function is to be found at the end of these notes, and you may want to read the initial
comment lines to learn more about the capabilities of this function. Here are the two
calls for our two samples:

>:IG&��)&VWU@� �GHQVLW\IG�57&��:IG���/IG��ODPEGD��
>:IG+��)+VWU@� �GHQVLW\IG�57+��:IG���/IG��ODPEGD��

The function returns two functional data objects, :IG+ and :IG&, for hyperactives and
controls, respectively, along with two struct objects containing the final minimzed fitting
criteria and the norms of the final gradients.

Now we want to plot the densities. The FD objects are not themselves densities, but
rather log densities plus an arbitrary constant. The following code converts these FD
objects, evaluated at a fine mesh of points, into actual density values for plotting.

QILQH� �����
[ILQH� �OLQVSDFH����������QILQH��

FYHF&� �JHWFRHI�:IG&��
&YDO&� �QRUPDOL]HBSKL�EDVLV��FYHF&��
:YHF&� �HYDO�:IG&���[ILQH��
3YHF&� �H[S�:YHF&���&YDO&�

FYHF+� �JHWFRHI�:IG+��
&YDO+� �QRUPDOL]HBSKL�EDVLV��FYHF+��
:YHF+� �HYDO�:IG+���[ILQH��
3YHF+� �H[S�:YHF+���&YDO+�

Now comes the plotting. We also plot the knots so that we can see where they are
positioned with respect to the reaction time distributions.

VXESORW�������
SORW��[ILQH��3YHF+��
N�
��[ILQH��3YHF&��
N��
�
KROG�RQ
IRU�L ����
��SORW�>EUHDNV�L��EUHDNV�L�@�>�������@��
N�
�
HQG
KROG�RII
D[LV�>��������������@�
[ODEHO�
?IRQWVL]H^��`�5HDFWLRQ�7LPH��PVHF�
�
\ODEHO�
?IRQWVL]H^��`�'HQVLW\
�
OHJHQG�
?IRQWVL]H^��`�$'+'
�
?IRQWVL]H^��`�&RQWURO
�

4. Looking at individual densities

We should always be suspicious of results from aggregated data, and especially when
there is enough information from individuals to give reasonable estimates of individual
results. In this case there is; around 70 reaction times yields ample information about the
shape of the density function. With this smaller sample, however, it makes sense to
increase the smoothing parameter in order to secure a reasonably smooth density
estimate.

Now we run through the cases, estimating the density separately for each by using
individualized knot placements. These density functions are each defined by a function
W(t) having an expansion in terms of the 34 B-splines in the basis that we have set up.
The coefficients for this expansion are stored in the array cvecstore.

cvecstore = zeros(nbasis,17);
for isub=1:17
 fprintf([’\nSubject ’,num2str(isub),’\n’])
 indexi = find(Hdat(:,1)==isub);
 xi = RTH(indexi);
 Wfd = densityfd(xi, Wfd0, Lfd, lambda);
 cvecstore(:,isub) = getcoef(Wfd);
end

Next��these coefficients are used to construct functional data objects for the functions
W(t).

CmatH = cvecstore;
WfdH = fd(CmatH, basisfd);

We also store the values of these functions and their derivatives in arrays WmatH and
wmatH.

WmatH = eval(WfdH, xfine);
wmatH = eval(WfdH, xfine, 1);

Next, we compute the values of the density functions defined by the functions W(t) and store
them in array PmatH, and also store the logs of the densities.

CvalmatH = zeros(17,1);
for i=1:17
 CvalmatH(i) = normalize_phi(basisfd, CmatH(:,i));
end
PmatH = exp(WmatH)./(ones(nfine,1)*CvalmatH’);
logdensmatH = WmatH - ones(nfine,1)*log(CvalmatH’);

Now comes the plotting of the density functions

VXESORW�������
SORW��[ILQH��3PDW+��
�
�
D[LV�>�������������@�
[ODEHO�
?IRQWVL]H^��`�5HDFWLRQ�7LPH��PVHF�
�
\ODEHO�
?IRQWVL]H^��`�'HQVLW\
�

and of the log density functions

SORW�[ILQH�ORJ3PDW+�
D[LV�>���������������@�
[ODEHO�
?IRQWVL]H^��`�5HDFWLRQ�7LPH��PVHF�
�
\ODEHO�
?IRQWVL]H^��`�/RJ�'HQVLW\
�

Later, we will also need the individual densities for the log-shifted data. These are
computed here for the ADHD group only. These statements define these values.

LRTC = log10(RTC - 120);
LRTH = log10(RTH - 120);

First, we need to define a new basis.

rangex = [2.25, 3.5];
nbasis = 34;
norder = 5;
basis = create_bspline_basis(rangex, nbasis, norder);

We’ll also change the size of the smoothing parameter rather dramatically, but this is
because the data now have a very different distribution.

lambda = 1e-8;

Now we are ready to calculate the density functions.

cvecstore = zeros(nbasis,nsub);
for isub=1:17
 fprintf([’\nSubject ’,num2str(isub),’\n’])
 indexi = Hdat(:,1)==isub;
 xi = LRTH(indexi);
 xi = xi(xi >= rangex(1) & xi <= rangex(2));
 Wfd0 = fd(cvecstore(:,isub), basis);
 Wfd = densityfd(xi, Wfd0, Lfd, lambda);
 cvecstore(:,isub) = getcoef(Wfd);
end

We set up a fine mesh of values for plotting and other computations.

nfine = 301;
xfine = linspace(2.25,3.5,nfine)’;
delta = xfine(2) - xfine(1);

As we did above, we store the values of the functions W(t), their derivatives, the
corresponding density functions and log density functions in arrays.

WfdLH = fd(CmatLH, basis);
WmatLH = eval(WfdLH, xfine);
wmatLH = eval(WfdLH, xfine, 1);
PmatLH = exp(WmatLH)./(ones(nfine,1)*CvalmatLH’);
logdensmatLH = WmatLH - ones(nfine,1)*log(CvalmatLH’);

We also store the means across subjects, which we shall need later.

WvecLH = mean(WmatLH’)’;
wvecLH = mean(wmatLH’)’;
PvecLH = exp(WvecLH);
PvecLH = PvecLH./(delta*sum(PvecLH));
logdensmeanLH = mean(logdensmatLH’)’;

5. Estimating Individual Effects as well as Group Density of residuals

To save space, we will only give the commands for the ADHD group.

The first step is to set up a design matrix or matrix of dummy variable values coding the
identify of the individual associated with each observation. We do this for both groups.

zmatH = zeros(HN,17);
for ifile=1:17
 index = (Hdat(:,1) == ifile);
 zmatH(index,ifile) = 1;
end
zmatC = zeros(CN,16);
for ifile=1:16
 index = (Cdat(:,1) == ifile);
 zmatC(index,ifile) = 1;
end

The density function that we now need to work with is no longer of either the reaction
times themselves, or of their log-shifted transformed values. Instead, it is of the residuals
from individual means for the log-shifted data. These residuals will have a mean of
approximately 0, but we need to do some preliminary analyses to get a reasonable value
for their standard deviation. In the following statements, we get estimates of individual
effects by least squares fitting of the data, and then computing the standard deviation of
the resulting residuals.

dvec0C = zmatC\LRTC;
resC = LRTC - zmatC*dvec0C;
dvec0H = zmatH\LRTH;
resH = LRTH - zmatH*dvec0H;
sigma0 = sqrt(sum([resC;resH].^2)/(CN+HN));

The resulting standard deviation sigma0 is 0.155, corresponding to 121.4 msec.

We also calculate the normalized residuals and their ranges.

resstdC = resC./sigma0;
rngC = [min(resstdC),max(resstdC)]
resstdH = resH./sigma0;
rngH = [min(resstdH),max(resstdH)]

Looking at the ranges of these normalized residuals, it looks like we can work with a
residual range of [-4,5]. We set up a basis accordingly.

rangex = [-4, 5];
nbasis = 34;
norder = 5;
basis = create_bspline_basis(rangex, nbasis, norder);
breaks = -4:0.3:5;

We set the value of the smoothing parameter.

lambda = 1e-6;

The following code gives us a reasonable set of starting values for the coefficients
defining the density and for the individual effects, stored in arrays cvec0 and dvec0,
respectively.

Wvec = -(resstdH - mean(resstdH)).^2./var(resstdH)./2;
ind = 3:nbasis-3;
inrng = find(resstdH >= rangex(1) & resstdH <= rangex(2));
basismat = getbasismatrix(resstdH(inrng), basis);
cvec0(ind) = basismat(:,ind)\Wvec(inrng);
cvec0 = cvec0 - mean(cvec0);
Wfd0 = fd(cvec0, basis);
dvec0 = zmatH\LRTH;

Now we compute the density and the individual effects using function LMfd.

6. Principal components analysis of the log densities

We now use principal components analysis to explore the variation in densities among
the hyperactive kids. The strategy is not to use PCA directly on the densities functions,
since we don’t want variations in densities to come out negative in some regions. That is,
PCA is best adapted to functions that are not constrained, for example in this case, to be
nonnegative. Instead, we work with the log density functions.

 But first we will need to get the density functions for the whole group to provide a
reference density around which we will describe variation. This is achieved by a minor
modification of the code above to compute individual densities.

EUHDNV+� �TXDQWEUN�57+��UDQJH[+��QEDVLV+��QRUGHU��
EDVLV+�� �FUHDWHBEVSOLQHBEDVLV�UDQJH[+��QEDVLV+��QRUGHU��EUHDNV+��
:IG�+��� �IG�FYHF�+��EDVLV+��
ODPEGD� ��H���
>:IG+��)+VWU@� �GHQVLW\IG�57+��:IG�+��/IG��ODPEGD��
FYHF+�� �JHWFRHI�:IG+��
:YHF+�� �HYDO�:IG+��[ILQH+��
3YHF+�� �H[S�:YHF+���QRUPDOL]HBSKL�EDVLV+��FYHF+��

As we noted in the chapter, log density exhibits great variation for extreme reaction
times. But we are not particularly interested in what happens there since, for the density
functions, since the log density is also greatly negative, and this translates into near zero
density values. So we use a weighted version of PCA. We compute the inner product
that defines PCA so that extreme values are considerably downweighted relative to the
weight on central values of reaction time. The weight that seems reasonable is simply the
density function itself, and we use the group density for this purpose, computed above.
Now a weighted PCA can be achieved as follows:

• multiply the data to be analyzed to the data multiplied by the square root of the
weights,

• carry out an unweighted PCA of these modified data
• multiply the eigenfunctions or harmonics of these modified data by the reciprocal

of the square roots of the weights so as to back-transform them to the original
metric. The eigenvalues, however, are correct as they are.

So here we set up the square root of the weights and the modified data:

ZWYHF��� ��3YHF+��VXP�3YHF+���A������
ORJGHQV� �ORJ�3PDW+���ZWYHF��RQHV���QILOHV+���

Of course, these are the discrete modified data, and our PCA functional data function
SFD expects a functional data object. So now we use GDWD�IG to set this up.

ORJGHQVIG� �GDWD�IG�ORJGHQV��[ILQH+��EDVLV+��

Now comes the PCA, calling for two factors, followed by back-transformtion of the
harmonic values.

SFDVWU+� �SFD�ORJGHQVIG�����
KDUPPDW� �HYDO�SFDVWU+�KDUPIG��[ILQH+��
KDUPPDW� �KDUPPDW�����ZWYHFRQHV���QIDF���

These two harmonics of the variation in log density account for 92% of the variance, and
dominate all remaining harmonics. This code plots them by add a judicious multiple
(1.5) of the harmonics to the mean log density, and then exponentiating and normalizing
the result to display it as a density.

GHOWD+� �[ILQH+������[ILQH+����
IRU�LIDF ��QIDF
��:YHFL� �:YHF+������KDUPPDW���LIDF��
��3YHFL� �H[S�:YHFL��
��3YHFL� �3YHFL��VXP�GHOWD+�3YHFL��
��VXESORW�����LIDF�
��SORW�[ILQH+��3YHFL��
�
��[ILQH+��3YHF+��
��
�
��WLWOH�>
?IRQWVL]H^��`�3&9�

�QXP�VWU�IORRU����SFDVWU+�YDUSURS�LIDF���@�
��D[LV�>��������������@�
��D[LV�
VTXDUH
�
HQG

Just how dominant these first two eigenvalue are can be seen in the plot produced by this
code. If you’re puzzled about why there are only nine eigenvalues, remember that we
only used nine basis functions in these analyses, and this, rather than sample size, is what
limits the number of eigenvalues in this case.

HLJYDOV� �SFDVWU+�HLJYDOV�
[� �RQHV������
[������ �UHVKDSH�������>���@��
\� �ORJ���HLJYDOV�������
F� �[?\�

VXESORW�������
SORW�����ORJ���HLJYDOV�������
�R
�������F�����F�����������
�
�
[ODEHO�
?IRQWVL]H^��`�(LJHQYDOXH�1XPEHU
�
\ODEHO�
?IRQWVL]H^��`�/RJ���(LJHQYDOXH
�
WLWOH�
?IRQWVL]H^��`�$'+'
�

You can, if you wish, now go on to do an eigenanalysis for the normal kids for
comparison purposes. It might be interesting, too, to have a look at a couple more
harmonics, even if they don’t account for much more of the variance.

Finally, a critical part of this analysis was a careful selection of the lower limit on the
range, in this case 350 milliseconds. We didn’t want the log density to be badly defined
because there were no data points near the lower limit. If you analyze the control group
data, a lower limit of 250 millisceonds is suggested.

