Varimax rotation for principal components in the two-dimensional case

The procedure described hereis an extension of the method described in 13 of
Harman (1976). It can be shown that the necessary formulae are similar to those given there.
In our case the loadings are 2-vectors, and to get the correct results we replace the squared
loading values x* and y;* in equation (13.24) by the squared norm of the loading 2-vectors,
and cross-products x; y; of values by inner products between 2-vectors.

Thefirst step is to write a function that finds the optimal rotation of a pair of loadings.
In what follows, suppose that the first half of the rows of the loadings matrix are the x
loadings, and the second half arethey loadings. The routine produces the optimally rotated
loadings matrix in a quadrimax sense.

r ot at et wol oadi ngs <- function(l oadi ngs) {

#
performquadrimax rotation of theloadings matrix x|
where the first half of the rows of xI correspond to
x-1 oadi ngs and the second half to correspondi ng yl oadi ngs
#
Sort out correct dinensions, and separate the x and y
| oadi ngs
#
nl <- dinm(loadings)[1]/2
xI <- loadings[1l:nl,]
yl <- loadings[nl+ (1:nl),]
#
Find coefficients of cos(4 phi) and sin(4 phi) in
expression for rotated quadrimax criterion
#
cp <= xI[,1]*xI[,2] +yl[,1]*yl[, 2]
nd <- xI[,1]72 - xI[,2]"2 +yl[,1]"2 - yl[,2]"2
a <- 4* sum(cp*nd)
b <- sum nd*2 - 4*cp”2)
#
sin (4 phi) and a have to have the same sign, so
this will find the correct phi
#
phi <- 0.25 * atan(a, b)
#
Calculate and apply the rotation
#

cphi <- cos(phi)

sphi <- sin(phi)

rmat <- matrix(c(cphi, sphi, -sphi, cphi), nrow=2)
new oad <- | oadi ngs % %r mat

return(new oad)

Now we can use the function to do an iteration of the quadrimax procedure on every
pair of columns in a loadings matrix.

rotateal |l oadi ngs <- function(l oadi ngs) {

#
loadings is now a matrix of ml oadi ngs.
The top half is x |oadings and the bottomhalf is vy
| oadi ngs
This rotates each pair of colums in turn to increase
the vector quadrimax criterion
#
m <- di m(l oadi ngs) [2]
for (j in(22m) { for (i in (1:(j-21))) {
bj_c(i, J)
| oadi ngs[, ij]_ rotate2l oadi ngs(l oadings[, ij])
} }
return(l oadi ngs)
}

Finally, we can write an iteration that performs this process to convergence.
vectorquadrimax <- function(l oads, tol=1.e-6){

Carries out vector quadrimax rotation for a matri x | oads
where the top half is x| oadings and the bottom hal f

is y |loadings.

Iterates until increase in score is |less thantol

HHHHHFH

nl <- din(loads)[1]/2
gs <- sun((loads[(21:nl),]”2 + loads[nl + (1:nl),]"2)"2)
for(iter in (1:100)) {
gold <- gs
| oads <- rotateallloadi ngs(l oads)
gs <- sun((loads[(1:nl),]”2 + loads[nl + (1:nl),]"2)"2)
if((gs - gqold) <tol) break

return(l oads)

}

